论文标题

部分可观测时空混沌系统的无模型预测

End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location

论文作者

Liu, Shiqing, Yan, Xueming, Jin, Yaochu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The facility location problems (FLPs) are a typical class of NP-hard combinatorial optimization problems, which are widely seen in the supply chain and logistics. Many mathematical and heuristic algorithms have been developed for optimizing the FLP. In addition to the transportation cost, there are usually multiple conflicting objectives in realistic applications. It is therefore desirable to design algorithms that find a set of Pareto solutions efficiently without enormous search cost. In this paper, we consider the multi-objective facility location problem (MO-FLP) that simultaneously minimizes the overall cost and maximizes the system reliability. We develop a learning-based approach to predicting the distribution probability of the entire Pareto set for a given problem. To this end, the MO-FLP is modeled as a bipartite graph optimization problem and two graph neural networks are constructed to learn the implicit graph representation on nodes and edges. The network outputs are then converted into the probability distribution of the Pareto set, from which a set of non-dominated solutions can be sampled non-autoregressively. Experimental results on MO-FLP instances of different scales show that the proposed approach achieves a comparable performance to a widely used multi-objective evolutionary algorithm in terms of the solution quality while significantly reducing the computational cost for search.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源