论文标题
部分可观测时空混沌系统的无模型预测
Painting the black box white: experimental findings from applying XAI to an ECG reading setting
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The shift from symbolic AI systems to black-box, sub-symbolic, and statistical ones has motivated a rapid increase in the interest toward explainable AI (XAI), i.e. approaches to make black-box AI systems explainable to human decision makers with the aim of making these systems more acceptable and more usable tools and supports. However, we make the point that, rather than always making black boxes transparent, these approaches are at risk of \emph{painting the black boxes white}, thus failing to provide a level of transparency that would increase the system's usability and comprehensibility; or, even, at risk of generating new errors, in what we termed the \emph{white-box paradox}. To address these usability-related issues, in this work we focus on the cognitive dimension of users' perception of explanations and XAI systems. To this aim, we designed and conducted a questionnaire-based experiment by which we involved 44 cardiology residents and specialists in an AI-supported ECG reading task. In doing so, we investigated different research questions concerning the relationship between users' characteristics (e.g. expertise) and their perception of AI and XAI systems, including their trust, the perceived explanations' quality and their tendency to defer the decision process to automation (i.e. technology dominance), as well as the mutual relationships among these different dimensions. Our findings provide a contribution to the evaluation of AI-based support systems from a Human-AI interaction-oriented perspective and lay the ground for further investigation of XAI and its effects on decision making and user experience.