论文标题

私人和可靠的神经网络推断

Private and Reliable Neural Network Inference

论文作者

Jovanović, Nikola, Fischer, Marc, Steffen, Samuel, Vechev, Martin

论文摘要

可靠的神经网络(NNS)提供了重要的推理时间可靠性保证,例如公平和鲁棒性。互补的,隐私的NN推理保护客户数据的隐私。到目前为止,这两个新兴领域已经在很大程度上断开了连接,但它们的组合将越来越重要。在这项工作中,我们提出了第一个系统,该系统可以对可靠的NNS进行隐私保护。我们的关键思想是为核心算法的随机平滑构建块设计有效的完全同态加密(FHE),这是一种用于获得可靠模型的最新技术。由于幼稚的解决方案导致不可接受的运行时,因此缺乏所需的控制流使这是一项艰巨的任务。我们采用这些构建块来在一个名为Phoenix的系统中以稳健性和公平性来启用隐私的NN推断。在实验上,我们证明凤凰城实现了其目标,而不会产生刺激性的潜伏期。据我们所知,这是桥接客户数据隐私和可靠性保证的第一批工作。

Reliable neural networks (NNs) provide important inference-time reliability guarantees such as fairness and robustness. Complementarily, privacy-preserving NN inference protects the privacy of client data. So far these two emerging areas have been largely disconnected, yet their combination will be increasingly important. In this work, we present the first system which enables privacy-preserving inference on reliable NNs. Our key idea is to design efficient fully homomorphic encryption (FHE) counterparts for the core algorithmic building blocks of randomized smoothing, a state-of-the-art technique for obtaining reliable models. The lack of required control flow in FHE makes this a demanding task, as naïve solutions lead to unacceptable runtime. We employ these building blocks to enable privacy-preserving NN inference with robustness and fairness guarantees in a system called Phoenix. Experimentally, we demonstrate that Phoenix achieves its goals without incurring prohibitive latencies. To our knowledge, this is the first work which bridges the areas of client data privacy and reliability guarantees for NNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源