论文标题
部分可观测时空混沌系统的无模型预测
Picard sheaves, local Brauer groups, and topological modular forms
论文作者
论文摘要
我们证明,TMF的Brauer组对椭圆曲线的衍生模量堆栈的Brauer组是同构。然后,我们计算本地Brauer组,即由Moduli堆栈的某些étale覆盖物琐碎的元素的子组,直至有限的2个扭转组。
We prove that the Brauer group of TMF is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Then, we compute the local Brauer group, i.e., the subgroup of the Brauer group of elements trivialized by some étale cover of the moduli stack, up to a finite 2-torsion group.