论文标题
选择和改进产品公式以最佳性能的量子模拟
Selection and improvement of product formulae for best performance of quantum simulation
论文作者
论文摘要
用于模拟哈密顿进化的量子算法通常基于产品公式。分形方法给出了一种系统的方法来找到任意高阶产品公式,但导致大量指数。另一方面,通过同时非线性方程的数值解决方案可以找到具有较少指数的产品公式。还可以通过处理,在重复内核,并且仅在模拟的开始和结束时仅应用处理器,也可以通过处理长期模拟的成本。在这项工作中,我们发现了数千种新产品公式,并在数值上测试了这些公式,以及先前文献中的许多公式。我们提供了相当比较不同长度和不同订单的产品公式的方法。对于第八阶的情况,我们发现了具有出色性能的新产品公式,在处理过的情况和未加工的情况下,与先前的工作相比,准确性要高两个数量级的准确性。处理后的产品公式可提供最佳性能,这是由于短的未加工产品公式短。在系统参数$ t $(time)和$ε$(允许错误)的许多数量范围内,它的表现优于所有其他测试的产品公式(允许错误)。其中包括用于在量子算法中使用的参数的合理组合,其中模拟的大小足够大,可以在经典上棘手,但并不是那么大,在量子计算机上花费了很长的时间。
Quantum algorithms for simulation of Hamiltonian evolution are often based on product formulae. The fractal methods give a systematic way to find arbitrarily high-order product formulae, but result in a large number of exponentials. On the other hand, product formulae with fewer exponentials can be found by numerical solution of simultaneous nonlinear equations. It is also possible to reduce the cost of long-time simulations by processing, where a kernel is repeated and a processor need only be applied at the beginning and end of the simulation. In this work, we found thousands of new product formulae, and numerically tested these formulae, together with many formulae from prior literature. We provide methods to fairly compare product formulae of different lengths and different orders. For the case of 8th order, we have found new product formulae with exceptional performance, about two orders of magnitude better accuracy than prior work, both in the processed and non-processed cases. The processed product formula provides the best performance due to being shorter than the non-processed product formula. It outperforms all other tested product formulae over a range of many orders of magnitude in system parameters $T$ (time) and $ε$ (allowable error). That includes reasonable combinations of parameters to be used in quantum algorithms, where the size of the simulation is large enough to be classically intractable, but not so large it takes an impractically long time on a quantum computer.