论文标题
通过多曝光生成的单位图HDR重建
Single-Image HDR Reconstruction by Multi-Exposure Generation
论文作者
论文摘要
高动态范围(HDR)成像是现代摄影中必不可少的技术。传统方法着眼于来自多个图像的HDR重建,解决了图像对齐,融合和音调映射的核心问题,但由于重建中的幽灵和其他视觉文物而具有完美的解决方案。最近对单位HDR重建的尝试表明了一种有希望的替代方法:通过学习使用神经网络将像素值映射到其辐照度中,人们可以完全绕过Align and-Merge Pipeline,但仍能获得高质量的HDR图像。在这项工作中,我们提出了一种弱监督的学习方法,该方法通过学习通过学习从单个图像产生多个暴露的HDR重构的物理图像形成过程。我们的神经网络可以在合成多个暴露量并从单个输入图像中汇总多个暴露和过度暴露区域中的幻觉细节之前,将相机响应反应重建像素辐照度。要训练网络,我们提出了表示损失,重建损失以及对不足和过度暴露图像的感知损失,因此不需要HDR图像进行训练。我们的实验表明,我们提出的模型可以有效地重建HDR图像。我们的定性和定量结果表明,我们的方法在DRTMO数据集上实现了最先进的性能。我们的代码可在https://github.com/vinairesearch/single_image_hdr上找到。
High dynamic range (HDR) imaging is an indispensable technique in modern photography. Traditional methods focus on HDR reconstruction from multiple images, solving the core problems of image alignment, fusion, and tone mapping, yet having a perfect solution due to ghosting and other visual artifacts in the reconstruction. Recent attempts at single-image HDR reconstruction show a promising alternative: by learning to map pixel values to their irradiance using a neural network, one can bypass the align-and-merge pipeline completely yet still obtain a high-quality HDR image. In this work, we propose a weakly supervised learning method that inverts the physical image formation process for HDR reconstruction via learning to generate multiple exposures from a single image. Our neural network can invert the camera response to reconstruct pixel irradiance before synthesizing multiple exposures and hallucinating details in under- and over-exposed regions from a single input image. To train the network, we propose a representation loss, a reconstruction loss, and a perceptual loss applied on pairs of under- and over-exposure images and thus do not require HDR images for training. Our experiments show that our proposed model can effectively reconstruct HDR images. Our qualitative and quantitative results show that our method achieves state-of-the-art performance on the DrTMO dataset. Our code is available at https://github.com/VinAIResearch/single_image_hdr.