论文标题
图形表示学习的广义拉普拉斯位置编码
Generalized Laplacian Positional Encoding for Graph Representation Learning
论文作者
论文摘要
图神经网络(GNN)是处理图形结构数据的主要工具。不幸的是,最常用的GNN被称为消息传递神经网络(MPNN)受到了几个基本局限性。为了克服这些局限性,最近的作品将位置编码的概念调整为图形数据。本文从最近基于拉普拉斯的位置编码的成功中汲取了灵感,并定义了一个新颖的位置编码方案系列。我们通过概括将拉普拉斯嵌入到更通用的差异函数而不是原始公式中使用的2纳米的优化问题来实现这一目标。然后,通过考虑p-norms实例化了这个位置编码家族。我们讨论一种计算这些位置编码方案,在Pytorch中实现的方法,并演示产生的位置编码如何捕获图形的不同属性。此外,我们证明了这个新颖的位置编码家族可以提高MPNN的表现力。最后,我们提出初步的实验结果。
Graph neural networks (GNNs) are the primary tool for processing graph-structured data. Unfortunately, the most commonly used GNNs, called Message Passing Neural Networks (MPNNs) suffer from several fundamental limitations. To overcome these limitations, recent works have adapted the idea of positional encodings to graph data. This paper draws inspiration from the recent success of Laplacian-based positional encoding and defines a novel family of positional encoding schemes for graphs. We accomplish this by generalizing the optimization problem that defines the Laplace embedding to more general dissimilarity functions rather than the 2-norm used in the original formulation. This family of positional encodings is then instantiated by considering p-norms. We discuss a method for calculating these positional encoding schemes, implement it in PyTorch and demonstrate how the resulting positional encoding captures different properties of the graph. Furthermore, we demonstrate that this novel family of positional encodings can improve the expressive power of MPNNs. Lastly, we present preliminary experimental results.