论文标题

复苏:通过元学习剩余用户偏好在CTR预测中通过元学习剩余用户偏好

RESUS: Warm-Up Cold Users via Meta-Learning Residual User Preferences in CTR Prediction

论文作者

Shen, Yanyan, Zhao, Lifan, Cheng, Weiyu, Zhang, Zibin, Zhou, Wenwen, Lin, Kangyi

论文摘要

对冷用户的点击率(CTR)预测是推荐系统中的一项具有挑战性的任务。最近的研究已诉诸于元学习,以应对冷使用挑战,该挑战的挑战要么执行几次用户表示学习,要么采用基于优化的元学习。但是,现有方法遭受信息丢失或效率低下的优化过程的影响,并且它们无法明确对全球用户偏好知识进行建模,这对于补充冷用户的稀疏和不足的偏好信息至关重要。在本文中,我们提出了一种名为Resus的新颖而高效的方法,该方法将集体用户从学习个人用户的剩余偏好中贡献的全球偏好知识学习。具体来说,我们采用共享的预测指标来推断基本用户的偏好,从而从不同用户的交互中获取了全局优先知识。同时,我们根据最近的邻居和脊回归预测变量开发了两种有效的算法,这些算法通过从一些特定于用户的交互中快速学习来推断残留的用户偏好。与各种最先进的方法相比,在三个公共数据集上进行了广泛的实验表明,我们的复苏方法在改善冷用户的CTR预测准确性方面是有效的。

Click-Through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge which is crucial to complement the sparse and insufficient preference information of cold users. In this paper, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源