论文标题

局部随机平滑以进行集体鲁棒性认证

Localized Randomized Smoothing for Collective Robustness Certification

论文作者

Schuchardt, Jan, Wollschläger, Tom, Bojchevski, Aleksandar, Günnemann, Stephan

论文摘要

图像分割,节点分类和许多其他任务的模型将单个输入映射到多个标签。通过扰动对手可以操纵几个预测(例如错误分类几个像素)的单个共享输入(例如图像)。集体鲁棒性认证是在此威胁模型下可证明稳健预测数量的任务。唯一超越独立认证每个输出的专用方法仅限于严格的本地模型,在该模型中,每个预测都与一个小型的接收场相关联。我们为所有类型的模型提供了更一般的集体鲁棒性证书。我们进一步表明,这种方法对较大的软局部模型有益,其中每个输出取决于整个输入,但对不同的输入区域分配了不同的重要性(例如,基于图像中的近距离)。该证书基于我们新颖的局部随机平滑方法,在这种方法中,不同输入区域的随机扰动强度与它们对输出的重要性成正比。局部平滑帕累托(Pareto)在图像分割和节点分类任务上均对现有证书,同时提供更高的准确性和更强的证书。

Models for image segmentation, node classification and many other tasks map a single input to multiple labels. By perturbing this single shared input (e.g. the image) an adversary can manipulate several predictions (e.g. misclassify several pixels). Collective robustness certification is the task of provably bounding the number of robust predictions under this threat model. The only dedicated method that goes beyond certifying each output independently is limited to strictly local models, where each prediction is associated with a small receptive field. We propose a more general collective robustness certificate for all types of models. We further show that this approach is beneficial for the larger class of softly local models, where each output is dependent on the entire input but assigns different levels of importance to different input regions (e.g. based on their proximity in the image). The certificate is based on our novel localized randomized smoothing approach, where the random perturbation strength for different input regions is proportional to their importance for the outputs. Localized smoothing Pareto-dominates existing certificates on both image segmentation and node classification tasks, simultaneously offering higher accuracy and stronger certificates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源