论文标题

深度学习对象检测方法以信号识别

Deep Learning Object Detection Approaches to Signal Identification

论文作者

Wood, Luke, Anderson, Kevin, Gerstoft, Peter, Bell, Richard, Subbaraman, Raghab, Bharadia, Dinesh

论文摘要

传统上,使用基于阈值的能量检测算法来解决源识别。这些算法经常概括区域的活动,并将特定活动阈值以上的区域视为来源。尽管这些算法适用于大多数情况,但它们通常无法检测到占据小频段的信号,无法区分重叠频段的源,并且无法检测到指定信号与噪声比率下的任何信号。通过将原始信号数据转换为频谱图,可以将源识别作为对象检测问题构架。通过利用基于深度学习的对象检测的现代进步,我们提出了一个系统,该系统可以减轻使用传统源识别算法时遇到的故障案例。我们的贡献包括作为对象检测问题的框架源标识,频谱对象检测数据集的发布以及在数据集上训练的视网膜和Yolov5对象检测模型的评估。我们的最终模型达到平均平均精度高达0.906。具有如此高的平均精度,这些模型足以在现实世界应用中使用。

Traditionally source identification is solved using threshold based energy detection algorithms. These algorithms frequently sum up the activity in regions, and consider regions above a specific activity threshold to be sources. While these algorithms work for the majority of cases, they often fail to detect signals that occupy small frequency bands, fail to distinguish sources with overlapping frequency bands, and cannot detect any signals under a specified signal to noise ratio. Through the conversion of raw signal data to spectrogram, source identification can be framed as an object detection problem. By leveraging modern advancements in deep learning based object detection, we propose a system that manages to alleviate the failure cases encountered when using traditional source identification algorithms. Our contributions include framing source identification as an object detection problem, the publication of a spectrogram object detection dataset, and evaluation of the RetinaNet and YOLOv5 object detection models trained on the dataset. Our final models achieve Mean Average Precisions of up to 0.906. With such a high Mean Average Precision, these models are sufficiently robust for use in real world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源