论文标题
GPA-net:无引用点云质量评估通过多任务图卷积网络
GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task Graph Convolutional Network
论文作者
论文摘要
随着3D视觉的快速发展,点云已成为越来越流行的3D视觉媒体内容。由于结构不规则,点云对相关研究提出了新的挑战,例如压缩,传输,渲染和质量评估。在这些最新研究中,Point Cloud质量评估(PCQA)由于其在指导实际应用中的重要作用而引起了广泛的关注,尤其是在许多情况下,在参考点云不可用的情况下。但是,基于普遍的深度神经网络的当前无参考指标具有明显的缺点。例如,为了适应点云的不规则结构,它们需要进行预处理,例如引入额外失真的体素化和投影,以及诸如卷积神经网络等应用的网格内核网络,未能提取有效的失真相关特征。此外,他们很少考虑PCQA应表现出变化,缩放和旋转不变性的各种失真模式和哲学。在本文中,我们提出了一种新型的无引用PCQA指标,名为Graph Sonvolutional PCQA网络(GPA-NET)。为了提取PCQA的有效功能,我们提出了一个新的图形卷积内核,即GPACONV,该内核专心地捕获了结构和纹理的扰动。然后,我们提出了由一个主要任务(质量回归)和两个辅助任务(失真类型和程度预测)组成的多任务框架。最后,我们提出了一个坐标归一化模块,以稳定在移位,尺度和旋转转换下的GPACONV结果。两个独立数据库的实验结果表明,与最先进的无参考PCQA指标相比,GPA-NET可以达到最佳性能,在某些情况下,甚至比某些全参考指标更好。
With the rapid development of 3D vision, point cloud has become an increasingly popular 3D visual media content. Due to the irregular structure, point cloud has posed novel challenges to the related research, such as compression, transmission, rendering and quality assessment. In these latest researches, point cloud quality assessment (PCQA) has attracted wide attention due to its significant role in guiding practical applications, especially in many cases where the reference point cloud is unavailable. However, current no-reference metrics which based on prevalent deep neural network have apparent disadvantages. For example, to adapt to the irregular structure of point cloud, they require preprocessing such as voxelization and projection that introduce extra distortions, and the applied grid-kernel networks, such as Convolutional Neural Networks, fail to extract effective distortion-related features. Besides, they rarely consider the various distortion patterns and the philosophy that PCQA should exhibit shifting, scaling, and rotational invariance. In this paper, we propose a novel no-reference PCQA metric named the Graph convolutional PCQA network (GPA-Net). To extract effective features for PCQA, we propose a new graph convolution kernel, i.e., GPAConv, which attentively captures the perturbation of structure and texture. Then, we propose the multi-task framework consisting of one main task (quality regression) and two auxiliary tasks (distortion type and degree predictions). Finally, we propose a coordinate normalization module to stabilize the results of GPAConv under shift, scale and rotation transformations. Experimental results on two independent databases show that GPA-Net achieves the best performance compared to the state-of-the-art no-reference PCQA metrics, even better than some full-reference metrics in some cases.