论文标题

通过适应感知的内核调制几乎没有图像生成

Few-shot Image Generation via Adaptation-Aware Kernel Modulation

论文作者

Zhao, Yunqing, Chandrasegaran, Keshigeyan, Abdollahzadeh, Milad, Cheung, Ngai-Man

论文摘要

几乎没有拍摄的图像产生(FSIG)旨在学会生成新的和多样的样品,因为来自域中的样品数量极为有限,例如10个培训样本。最近的工作通过转移学习方法解决了这个问题,利用了在大规模源域数据集上预定的GAN,并根据非常有限的目标域样本将该模型适应到目标域。最近的FSIG方法的核心是保留标准的知识,旨在选择源模型的一部分,以保存在适应模型中。但是,现有方法的一个主要局限性是,他们的知识保留标准仅考虑源域/源任务,并且他们在选择源模型的知识时未能考虑目标域/适应任务,对其对源和目标域之间不同接近性设置的适用性提出了怀疑。我们的工作做出了两种贡献。作为我们的第一个贡献,我们重新访问了FSIG最近的工作及其实验。我们的重要发现是,在设置下,假设源域和目标域之间紧邻近距离的设置是放松的,现有的最新方法(SOTA)方法仅考虑仅考虑源域/源任务的知识保存中的源域/源任务,没有比基线微调方法更好。为了解决现有方法的局限性,作为我们的第二个贡献,我们提出了适应性感知的内核调制(ADAM)来解决不同源目标域接近的一般FSIG。广泛的实验结果表明,所提出的方法始终在不同接近度的源/目标域之间达到SOTA性能,包括当源和目标域更加分开时具有挑战性的设置。项目页面:https://yunqing-me.github.io/adam/

Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model's knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model's knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源