论文标题

$ \ Mathcal {n} $互动旋转的几何,拓扑和动态描述 - $ \ Mathtt {s} $在远程模型下及其与量子纠缠的相互作用

Geometrical, topological and dynamical description of $\mathcal{N}$ interacting spin-$\mathtt{s}$ under long-range Ising model and their interplay with quantum entanglement

论文作者

Amghar, Brahim, Slaoui, Abdallah, Elfakir, Jamal, Daoud, Mohammed

论文摘要

理解可在量子信息任务中利用量子现象的可集成量子系统的几何,拓扑和动力结构之间的连接,例如量子纠缠,是几何信息科学的主要问题。在这项工作中,我们在$ \ mathcal {n} $互动旋转的物理系统中调查了这些问题 - $ \ mathtt {s} $在远程模型下。我们发现相关的动力学,确定相应的量子相空间,并得出相关的fubini-study度量。通过应用高斯河网定理和高斯曲率的推导,我们证明了动力学发生在球形拓扑歧管上。之后,我们分析了在任意和循环进化过程中获得的几何相,并通过建立时间优势的演化来解决量子腕骨问题。此外,通过将系统缩小到两个旋转-U \ Mathtt {s} $系统,我们从两个不同的角度探索了相关的纠缠;第一个是几何性质的,涉及纠缠程度与几何结构之间的相互作用的研究,例如fubini-study指标,高斯曲率和几何相。第二个本质上是动力学的,并应对纠缠速度和大地距离的纠缠效应。此外,我们基于纠缠程度解决了量子腕骨问题。

Comprehending the connections between the geometric, topological, and dynamical structures of integrable quantum systems with quantum phenomena exploitable in quantum information tasks, such as quantum entanglement, is a major problem in geometric information science. In this work we investigate these issues in a physical system of $\mathcal{N}$ interacting spin-$\mathtt{s}$ under long-range Ising model. We discover the relevant dynamics, identify the corresponding quantum phase space and we derive the associated Fubini-Study metric. Through the application of the Gauss-Bonnet theorem and the derivation of the Gaussian curvature, we have proved that the dynamics occurs on a spherical topology manifold. Afterwards, we analyze the gained geometrical phase under the arbitrary and cyclic evolution processes and solve the quantum brachistochrone problem by establishing the time-optimal evolution. Moreover, by narrowing the system to a two spin-$\mathtt{s}$ system, we explore the relevant entanglement from two different perspectives; The first is geometrical in nature and involves the investigation of the interplay between the entanglement degree and the geometrical structures, such as the Fubini-Study metric, the Gaussian curvature and the geometrical phase. The second is dynamical in nature and tackles the entanglement effect on the evolution speed and geodesic distance. Additionally, we resolve the quantum brachistochrone problem based on the entanglement degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源