论文标题
强耦合量子多体系统的路径综合方法
Path-integral approaches to strongly-coupled quantum many-body systems
论文作者
论文摘要
本论文的核心是量子场理论的路径综合设备及其描述有限大小的强耦合量子多体系统的能力。通过在平均场方法中实施自发对称性破坏(SSB),可以在此类系统中有效地描述集体行为。但是,由于在有限大小的系统中热力学极限没有意义,因此必须恢复在平均场水平上分解的任何SSB,并且必须恢复在平均场水平上分解的对称性。因此,可以通过恢复自发损坏的对称性的能力来研究理论方法在处理有限尺寸量子系统中的效率。在本论文中,零维$ O(n)$模型被视为一种理论实验室,以许多最先进的路径 - 整体技术进行此类研究:扰动理论结合了各种重置方法(Padé-borel,Borel,Borel,Borel-Hyperel-Hyporets,相互映射,增强式危险范围),危险理论(增强型号),这会散发出危险理论(越来越多的危险理论)(越来越多的危险理论)。扰动理论),基于有效动作的自洽扰动理论(辅助场循环扩展(LOAF),Cornwall-Jackiw-Tomboulis(CJT)形式主义,4PPI有效的动作,...),功能性更授权小组(FRG)技术(FRG)技术(FRG基于Wetterich Equation,dfterich Equation,Dftfrg,dftfrg,2pi-frg,2pi-frg,2pi-frg。还强调了这些不同技术之间的联系。此外,路径综合形式主义为我们提供了通过哈伯德 - 斯特拉托尼维奇转换以确切方式引入集体自由度的可能性:此类转换对上述方法的影响也得到了详细介绍。
The core of this thesis is the path-integral formulation of quantum field theory and its ability to describe strongly-coupled quantum many-body systems of finite size. Collective behaviors can be efficiently described in such systems through the implementation of spontaneous symmetry breaking (SSB) in mean-field approaches. However, as the thermodynamic limit does not make sense in finite-size systems, the latter can not exhibit any SSB and the symmetries which are broken down at the mean-field level must therefore be restored. The efficiency of theoretical approaches in the treatment of finite-size quantum systems can therefore be studied via their ability to restore spontaneously broken symmetries. In this thesis, a zero-dimensional $O(N)$ model is taken as a theoretical laboratory to perform such an investigation with many state-of-the-art path-integral techniques: perturbation theory combined with various resummation methods (Padé-Borel, Borel-hypergeometric, conformal mapping), enhanced versions of perturbation theory (transseries derived via Lefschetz thimbles, optimized perturbation theory), self-consistent perturbation theory based on effective actions (auxiliary field loop expansion (LOAF), Cornwall-Jackiw-Tomboulis (CJT) formalism, 4PPI effective action, ...), functional renormalization group (FRG) techniques (FRG based on the Wetterich equation, DFT-FRG, 2PI-FRG). Connections between these different techniques are also emphasized. In addition, the path-integral formalism provides us with the possibility to introduce collective degrees of freedom in an exact fashion via Hubbard-Stratonovich transformations: the effect of such transformations on the aforementioned methods is also examined in detail.