论文标题
动态毛细管方程,并在流形上有随机强迫:一个奇异的极限问题
A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem
论文作者
论文摘要
我们考虑一个动态毛细管方程,并在紧凑的Riemannian歧管$(m,g)$上进行随机强迫。 \ begin {qore*} \ tag {p} d \ left(u _ {\ varepsilon,δ}-Δδ u _ {\ varepsilon,δ} \ right) +\ \ operatorName {div} f _ {\ varepsilon}(x,u _ {\ varepsilon,δ})\,dt = \varepsilonΔu_{\ varepsilon,δ} \,dt φ(x,u _ {\ varepsilon,δ})\,dw_t,\ end {equation*}其中$ f _ {\ varepsilon} $是一系列平滑矢量字段的顺序,在$ l^p(m \ bbb {m bbb {r} $ p $ p $ p($ p> 2 $)中,向量字段$ f \ in l^p(m; c^1(\ bbb {r}))$,$ w_t $是在过滤的概率空间上定义的wiener过程。首先,对于$ \ varepsilon $和$δ$的固定值,我们确定了(p)的Cauchy问题的弱解决方案的存在和独特性。假设$ f $是非分类的,并且$ \ varepsilon $和$δ$倾向于用$Δ/\ varepsilon^2 $有限为零,我们表明,在$ l^1_ {ω,t,x,x,x} $ of martingale of distochoperal of distochoctical of distochoctical of distochoctical of distochoctical of distochoctical of distochoctical prow中存在的解决方案的序列有强烈的收敛性。 +\ operatorName {div} f(x,u)\,dt =φ(u)\,dw_t。 $$的证明利用盖尔金的近似,动力学配方以及$ h $量和新的速度平均随机连续性方程式。该分析依赖于使用A.S.〜在某些特定的准派空间中随机变量的表示。此处开发的收敛框架可以应用于随机保护定律的其他奇异极限问题。
We consider a dynamic capillarity equation with stochastic forcing on a compact Riemannian manifold $(M,g)$. \begin{equation*}\tag{P} d \left(u_{\varepsilon,δ}-δΔ u_{\varepsilon,δ}\right) +\operatorname{div} f_{\varepsilon}(x, u_{\varepsilon,δ})\, dt =\varepsilon Δu_{\varepsilon,δ}\, dt Φ(x, u_{\varepsilon,δ})\, dW_t, \end{equation*} where $f_{\varepsilon}$ is a sequence of smooth vector fields converging in $L^p(M\times \Bbb{R})$ ($p>2$) as $\varepsilon\downarrow 0$ towards a vector field $f\in L^p(M;C^1(\Bbb{R}))$, and $W_t$ is a Wiener process defined on a filtered probability space. First, for fixed values of $\varepsilon$ and $δ$, we establish the existence and uniqueness of weak solutions to the Cauchy problem for (P). Assuming that $f$ is non-degenerate and that $\varepsilon$ and $δ$ tend to zero with $δ/\varepsilon^2$ bounded, we show that there exists a subsequence of solutions that strongly converges in $L^1_{ω,t,x}$ to a martingale solution of the following stochastic conservation law with discontinuous flux: $$ d u +\operatorname{div} f(x, u)\,dt=Φ(u)\, dW_t. $$ The proofs make use of Galerkin approximations, kinetic formulations as well as $H$-measures and new velocity averaging results for stochastic continuity equations. The analysis relies in an essential way on the use of a.s.~representations of random variables in some particular quasi-Polish spaces. The convergence framework developed here can be applied to other singular limit problems for stochastic conservation laws.