论文标题
通过被动网络储备的活性纠缠聚合物的分子动力学模拟
Molecular dynamics simulations of active entangled polymers reptating through a passive mesh
论文作者
论文摘要
在这项工作中,我们使用修改后的Kremer-Grest模型的分子动力学模拟探索了主动纠缠链的动力学。在很长的被动线性链中稀释活性链,以避免限制释放效果,并以沿原始路径赋予恒定的极性漂移速度的方式将活性施加到单体上。仿真结果表明,在广泛的活性值中,链和管的构象性能不受影响,但链的动力学受到了严重修改。尽管没有显式管,但模拟还是非常准确地验证了有关所有可能可观察物的理论的所有预测,包括在活性中等值下独立于分子量的扩散系数。总体而言,这项工作提供了有关活性纠缠聚合物研究的新信息,提供了研究这种现象的路线图,以及一种有效的方法,用于获得活性振兴理论物理学的极性活性。
In this work, we explore the dynamics of active entangled chains using molecular dynamics simulations of a modified Kremer-Grest model. The active chains are diluted in a mesh of very long passive linear chains, to avoid constraint release effects, and an active force is applied to the monomers in a way that it imparts a constant polar drift velocity along the primitive path. The simulation results show that, over a wide range of activity values, the conformational properties of the chains and the tubes are not affected, but the dynamics of the chains are severely modified. Despite not having an explicit tube, the simulations verify all the predictions of the theory about all possible observables very accurately, including a diffusion coefficient that becomes independent of the molecular weight at moderate values of the activity. Overall, this work provides novel information on the study of active entangled polymers, giving a route map for studying this phenomenon and an efficient way of obtaining a polar activity that reproduces the physics of the active reptation theory.