论文标题
Lienard-Wiechert电位中多普勒因子的代数起源
The algebraic origin of the Doppler factor in the Lienard-Wiechert potentials
论文作者
论文摘要
在回顾了电荷点粒子的Lienard-Wiechert电位中多普勒因子的α衍生物后,我们得出的结论是,在电动力学中使用的DIRAC DELTA功能必须是遵守弱定义,在无限的邻域中无Zero的一个,而不是一个无限的邻域,而不是遵守强定义的一个点。该结论来自我们对a)重要的dirac delta函数身份的推导,从而产生多普勒因子,b)绿色函数方法隐式使用的线性叠加原理; c)schwarzschild-tetrode-tetrode-tetrode-fokker-fokker-fokker-fokker-fokker-fime。结果,与我们先前对多普勒因子几何起源的讨论完全一致,我们得出的结论是,电磁相互作用不是在Minkowski空间中的点之间进行,而是在粒子界沿着粒子世界的相应无限段之间进行。
After reviewing the algebraic derivation of the Doppler factor in the Lienard-Wiechert potentials of an electrically charged point particle, we conclude that the Dirac delta function used in electrodynamics must be the one obeying the weak definition, non-zero in an infinitesimal neighborhood, and not the one obeying the strong definition, non-zero in a point. This conclusion emerges from our analysis of a) the derivation of an important Dirac delta function identity, which generates the Doppler factor, b) the linear superposition principle implicitly used by the Green function method, and c) the two equivalent formulations of the Schwarzschild-Tetrode-Fokker action. As a consequence, in full agreement with our previous discussion of the geometrical origin of the Doppler factor, we conclude that the electromagnetic interaction takes place not between points in Minkowski space, but between corresponding infinitesimal segments along the worldlines of the particles.