论文标题
在热力学限制的芯片尺度光学腔中,参数驱动的惯性感应具有扩展的动态范围
Parametrically driven inertial sensing in chip-scale optomechanical cavities at the thermodynamical limits with extended dynamic range
论文作者
论文摘要
最近的科学和技术进步使得能够检测引力波,自动驾驶以及月球通信网络的提议(月球互联网或Lunanet)。这些努力基于对微小位移的测量以及相应的力或场转导,这些力或场转导转化为导航的加速度,速度和位置确定。最先进的加速度计使用电容性或压电电阻技术,以及通过集成电路(IC)技术的微电动机电系统(MEMS),以驱动传感器并转换其用于电动读数的输出。近年来,激光光学机械转导和读数已实现了对运动位移的高度敏感检测。在这里,我们进一步研究了当传感器驱动到振荡模式时,新型机械频率读数技术的理论框架[8]。我们展示了理论和身体一致性,并具有1.5mg/hz加速度敏感性的设备最相关的性能参数,2.5 FM/HZ1/2位移分辨率对应于17.02 ug/hz1/2力量等效加速度的17.02 ug/hz1/2,以及5.91 HZ/NW功率敏感性和a poter Mesitivitivitive ant poder oferdrodysical antth atth at at pody ant at Atth at at ater Atterodyrysil lim lim lim libits。此外,我们为动态范围扩展提供了一种新颖的技术,同时保持精确的感测灵敏度。我们的惯性加速度计已在片上集成,并启用了启用激光检测方法的包装。
Recent scientific and technological advances have enabled the detection of gravitational waves, autonomous driving, and the proposal of a communications network on the Moon (Lunar Internet or LunaNet). These efforts are based on the measurement of minute displacements and correspondingly the forces or fields transduction, which translate to acceleration, velocity, and position determination for navigation. State-of-the-art accelerometers use capacitive or piezo resistive techniques, and micro-electromechanical systems (MEMS) via integrated circuit (IC) technologies in order to drive the transducer and convert its output for electric readout. In recent years, laser optomechanical transduction and readout have enabled highly sensitive detection of motional displacement. Here we further examine the theoretical framework for the novel mechanical frequency readout technique of optomechanical transduction when the sensor is driven into oscillation mode [8]. We demonstrate theoretical and physical agreement and characterize the most relevant performance parameters with a device with 1.5mg/Hz acceleration sensitivity, a 2.5 fm/Hz1/2 displacement resolution corresponding to a 17.02 ug/Hz1/2 force-equivalent acceleration, and a 5.91 Hz/nW power sensitivity, at the thermodynamical limits. In addition, we present a novel technique for dynamic range extension while maintaining the precision sensing sensitivity. Our inertial accelerometer is integrated on-chip, and enabled for packaging, with a laser-detuning-enabled approach.