论文标题
一种自适应抑制牛顿的方法,用于强烈单调和Lipschitz连续操作员方程
An adaptive damped Newton method for strongly monotone and Lipschitz continuous operator equations
论文作者
论文摘要
我们将考虑在各种环境中使用强烈单调和Lipschitz连续操作员方程的牛顿阻尼方法。我们将提供一个非常易于获得的理由,为什么未阻止的牛顿方法在解决方案附近的缩减效果更好。此外,在给定的环境中,将提出一种自适应的阶级策略,该策略保证了全球融合并有利于不受阻止的更新。
We will consider the damped Newton method for strongly monotone and Lipschitz continuous operator equations in a variational setting. We will provide a very accessible justification why the undamped Newton method performs better than its damped counterparts in a vicinity of a solution. Moreover, in the given setting, an adaptive step-size strategy will be presented, which guarantees the global convergence and favours an undamped update if admissible.