论文标题
部分可观测时空混沌系统的无模型预测
Forecasting Local Behavior of Self-organizing Many-agent System without Reconstruction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Large multi-agent systems are often driven by locally defined agent interactions, which is referred to as self-organization. Our primary objective is to determine when the propagation of such local interactions will reach a specific agent of interest. Although conventional approaches that reconstruct all agent states can be used, they may entail unnecessary computational costs. In this paper, we investigate a CNN-LSTM model to forecast the state of a particular agent in a large self-organizing multi-agent system without the reconstruction. The proposed model comprises a CNN encoder to represent the system in a low-dimensional vector, a LSTM module to learn agent dynamics in the vector space, and a MLP decoder to predict the future state of an agent. As an example, we consider a forest fire model where we aim to predict when a particular tree agent will start burning. We compare the proposed model with reconstruction-based approaches such as CNN-LSTM and ConvLSTM. The proposed model exhibits similar or slightly worse AUC but significantly reduces computational costs such as activation than ConvLSTM. Moreover, it achieves higher AUC with less computation than the recontruction-based CNN-LSTM.