论文标题

通过分段扩散抽样采样的加速扩散模型进行医学图像分割

Accelerating Diffusion Models via Pre-segmentation Diffusion Sampling for Medical Image Segmentation

论文作者

Guo, Xutao, Yang, Yanwu, Ye, Chenfei, Lu, Shang, Xiang, Yang, Ma, Ting

论文摘要

基于分解扩散概率模型(DDPM),可以将医疗图像分割描述为有条件的图像生成任务,该任务允许计算分割的像素不确定性图,并允许分割的隐式集成以提高分割性能。但是,DDPM需要许多迭代的剥离步骤,以从高斯噪声中产生分割,从而导致推断极低。为了减轻问题,我们提出了一种原则性的加速策略,称为段扩散扩散采样DDPM(PD-DDPM),该策略是专门用于医疗图像分割的。关键思想是根据训练有素的分割网络获得细分结果,并根据正向扩散规则构建噪声预测(非高斯分布)。然后,我们可以从嘈杂的预测开始,并使用更少的反向步骤来生成分割结果。实验表明,即使反向步骤的数量大大减少,PD-DDPM即使相对于代表性基线方法产生更好的分割结果。此外,PD DDPM与现有的高级分割模型是正交的,可以将其组合起来以进一步改善细分性能。

Based on the Denoising Diffusion Probabilistic Model (DDPM), medical image segmentation can be described as a conditional image generation task, which allows to compute pixel-wise uncertainty maps of the segmentation and allows an implicit ensemble of segmentations to boost the segmentation performance. However, DDPM requires many iterative denoising steps to generate segmentations from Gaussian noise, resulting in extremely inefficient inference. To mitigate the issue, we propose a principled acceleration strategy, called pre-segmentation diffusion sampling DDPM (PD-DDPM), which is specially used for medical image segmentation. The key idea is to obtain pre-segmentation results based on a separately trained segmentation network, and construct noise predictions (non-Gaussian distribution) according to the forward diffusion rule. We can then start with noisy predictions and use fewer reverse steps to generate segmentation results. Experiments show that PD-DDPM yields better segmentation results over representative baseline methods even if the number of reverse steps is significantly reduced. Moreover, PD-DDPM is orthogonal to existing advanced segmentation models, which can be combined to further improve the segmentation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源