论文标题
相位量子量子通道的几何形状
Geometry of phase-covariant qubit channels
论文作者
论文摘要
我们分析了非虚拟相关量子图的几何形状。使用相应的choi-jamiołkowski状态,我们使用通道特征值以及表征非单身性的参数来得出Hilbert-Schmidt线和音量元素。我们发现形状并在分析上计算相关通道的体积,尤其是纠缠破裂,可通过时局部发电机获得。
We analyze the geometry on the space of non-unital phase-covariant qubit maps. Using the corresponding Choi-Jamiołkowski states, we derive the Hilbert-Schmidt line and volume elements using the channel eigenvalues together with the parameter that characterizes non-unitality. We find the shapes and analytically compute the volumes of phase-covariant channels, in particular entanglement breaking and obtainable with time-local generators.