论文标题
在横截面依赖性下进行空气质量评估的时空事件研究
Spatio-temporal Event Studies for Air Quality Assessment under Cross-sectional Dependence
论文作者
论文摘要
事件研究(ES)是统计工具,可以评估特定感兴趣的事件是否导致一个或多个相关时间序列的水平变化。我们对以高空间(横截面)和时间依赖性为特征的多元时间序列感兴趣。我们追求两个目标。首先,我们建议通过概括基本的统计概念,然后将其调整为空气寄生污染物浓度的时间序列分析,从而扩展对ES的现有分类法,主要是从金融领域衍生而来的。其次,我们通过采用双重调整来解决空间横截面依赖性。最初,我们使用线性混合时空回归模型(HDGM)来估计响应变量与一组外源性因素之间的关系,同时考虑了观测值的时空动力学。后来,我们应用了一组16个ES测试统计量,包括参数和非参数,其中一些直接调整了横截面依赖性。我们将ES应用于评估2020年Covid-19期间伦巴第地区(意大利)所采用的锁定限制产生的NO2浓度的影响。HDGM模型明显地揭示了感兴趣的事件引起的水平变化,同时降低了波动性并隔离数据的空间依赖性。此外,所有测试统计量都一致表明,锁定限制会导致平均No2浓度显着降低。
Event Studies (ES) are statistical tools that assess whether a particular event of interest has caused changes in the level of one or more relevant time series. We are interested in ES applied to multivariate time series characterized by high spatial (cross-sectional) and temporal dependence. We pursue two goals. First, we propose to extend the existing taxonomy on ES, mainly deriving from the financial field, by generalizing the underlying statistical concepts and then adapting them to the time series analysis of airborne pollutant concentrations. Second, we address the spatial cross-sectional dependence by adopting a twofold adjustment. Initially, we use a linear mixed spatio-temporal regression model (HDGM) to estimate the relationship between the response variable and a set of exogenous factors, while accounting for the spatio-temporal dynamics of the observations. Later, we apply a set of sixteen ES test statistics, both parametric and nonparametric, some of which directly adjusted for cross-sectional dependence. We apply ES to evaluate the impact on NO2 concentrations generated by the lockdown restrictions adopted in the Lombardy region (Italy) during the COVID-19 pandemic in 2020. The HDGM model distinctly reveals the level shift caused by the event of interest, while reducing the volatility and isolating the spatial dependence of the data. Moreover, all the test statistics unanimously suggest that the lockdown restrictions generated significant reductions in the average NO2 concentrations.