论文标题

MEDS-NET:具有双向最大强度投影的自启动的多启动多编码器网络检测

MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection

论文作者

Usman, Muhammad, Rehman, Azka, Shahid, Abdullah, Latif, Siddique, Byon, Shi Sub, Lee, Byoung Dai, Kim, Sung Hyun, Lee, Byung il, Shin, Yeong Gil

论文摘要

在这项研究中,我们提出了一种肺结核检测方案,该方案充分结合了放射科医生的临床工作流程。特别是,我们利用了各种厚度(即3、5和10mm)的双向最大强度投影(MIP)图像以及3D CT扫描片,由10个相邻切片组成,以进食基于自distillation的多次多次数编码器网络(MEDS-NET)。所提出的体系结构首先使用密集的块将3D斑块输入到三个通道中,该密集块由密集的单元组成,这些单元有效地检查了来自2D轴向切片的结节存在。这些凝结的信息以及向前和向后的MIP图像被馈送到三个不同的编码器中,以学习最有意义的表示形式,该表示在不同级别的解码块中。在解码器块上,我们通过连接包含五个肺结核探测器的蒸馏块来采用自我验证机制。它有助于加快融合并提高所提议的体系结构的学习能力。最后,提出的方案通过用辅助检测器补充主要检测器来降低误报。该计划的方案已在888张LUNA16数据集上进行了严格评估,并获得了93.6 \%的CPM分数。结果表明,合并双向MIP图像使Meds-NET能够有效区分结节与周围的结节,从而有助于分别每次扫描的假阳性速率分别达到91.5%和92.8%的敏感性。

In this study, we propose a lung nodule detection scheme which fully incorporates the clinic workflow of radiologists. Particularly, we exploit Bi-Directional Maximum intensity projection (MIP) images of various thicknesses (i.e., 3, 5 and 10mm) along with a 3D patch of CT scan, consisting of 10 adjacent slices to feed into self-distillation-based Multi-Encoders Network (MEDS-Net). The proposed architecture first condenses 3D patch input to three channels by using a dense block which consists of dense units which effectively examine the nodule presence from 2D axial slices. This condensed information, along with the forward and backward MIP images, is fed to three different encoders to learn the most meaningful representation, which is forwarded into the decoded block at various levels. At the decoder block, we employ a self-distillation mechanism by connecting the distillation block, which contains five lung nodule detectors. It helps to expedite the convergence and improves the learning ability of the proposed architecture. Finally, the proposed scheme reduces the false positives by complementing the main detector with auxiliary detectors. The proposed scheme has been rigorously evaluated on 888 scans of LUNA16 dataset and obtained a CPM score of 93.6\%. The results demonstrate that incorporating of bi-direction MIP images enables MEDS-Net to effectively distinguish nodules from surroundings which help to achieve the sensitivity of 91.5% and 92.8% with false positives rate of 0.25 and 0.5 per scan, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源