论文标题

拓扑符号围栏问题的精确解决方案

Exact solution of the topological symplectic Kondo problem

论文作者

König, Elio J., Tsvelik, Alexei M.

论文摘要

近藤效应是强相关电子系统物理学中的一种原型现象。最近的注意力集中在近多物理学在量子信息科学上的应用,通过用残留的任何类似于任何类似于杂质的杂质熵来利用过度应用的杂种杂质。虽然这种物理学是在微调的多通道贡多设置中提出的,或者在基于Majorana的拓扑贡献效应中,我们在这里研究了具有符号对称性SP(2K)的围绕效应,并且有关实施的详细信息,重要的是,重要的是,重要的是,重要的是仅涉及常规的S-Wave超导性,都不需要完美的伪装范围,并且不需要完美的福音层。我们仔细地讨论了扰动的作用,并表明全球Zeeman将系统驱动到2通道SU(K)固定点。使用热力学的伯特·安萨兹(Bethe Ansatz)用于SP(2K)的热力学Bethe ANSATZ得出了残留熵,比热和磁化的确切结果。该解决方案不仅证明了具有任何类似Hilbert空间维度的量子临界基态的存在,而且还证明了临界时期的非Fermi液体行为特别弱。我们将非分析性的弱点解释为在杂质处抑制状态密度的表现,从而导致假定的人和传导电子的连接非常弱。鉴于这种薄弱的联系,设计的简单性以及效果的稳定性,我们猜测符号临床效应可能特别适合于量子信息应用。

The Kondo effect is an archetypical phenomenon in the physics of strongly correlated electron systems. Recent attention has focused on the application of Kondo physics to quantum information science by exploiting overscreened Kondo impurities with residual anyon-like impurity entropy. While this physics was proposed in the fine-tuned multi-channel Kondo setup or in the Majorana-based topological Kondo effect, we here study the Kondo effect with symplectic symmetry Sp(2k) and present details about the implementation which importantly only involves conventional s-wave superconductivity coupled to an array of resonant levels and neither requires perfect channel symmetry nor Majorana fermions. We carefully discuss the role of perturbations and show that a global Zeeman drives the system to a 2-channel SU(k) fixed point. Exact results for the residual entropy, specific heat, and magnetization are derived using the thermodynamic Bethe Ansatz for Sp(2k). This solution not only proves the existence of a quantum critical ground state with anyon-like Hilbert space dimension but also a particularly weak non-Fermi liquid behavior at criticality. We interpret the weakness of non-analyticities as a manifestation of suppressed density of states at the impurity causing only a very weak connection of putative anyons and conduction electrons. Given this weak connection, the simplicity of the design, and the stability of the effect, we conjecture that the symplectic Kondo effect may be particularly suitable for quantum information applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源