论文标题

解开(联合国)可控功能

Disentangled (Un)Controllable Features

论文作者

Kooi, Jacob E., Hoogendoorn, Mark, François-Lavet, Vincent

论文摘要

在具有高维状态的MDP的背景下,下游任务主要应用于原始输入空间的压缩,低维表示。因此,已使用各种学习目标来获得有用的表示。但是,这些表示通常缺乏不同特征的解释性。我们提出了一种新颖的方法,该方法能够将潜在特征分解为可控和无法控制的分区。我们说明,在三种类型的环境上很容易解释所得的分区表示形式,并表明,在程序生成的迷宫环境的分布中,可以在孤立的可控制的潜在分区中采用计划算法是可行的。

In the context of MDPs with high-dimensional states, downstream tasks are predominantly applied on a compressed, low-dimensional representation of the original input space. A variety of learning objectives have therefore been used to attain useful representations. However, these representations usually lack interpretability of the different features. We present a novel approach that is able to disentangle latent features into a controllable and an uncontrollable partition. We illustrate that the resulting partitioned representations are easily interpretable on three types of environments and show that, in a distribution of procedurally generated maze environments, it is feasible to interpretably employ a planning algorithm in the isolated controllable latent partition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源