论文标题

堆叠设计:设计具有目标预测精度的多保真计算机实验

Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy

论文作者

Sung, Chih-Li, Ji, Yi, Mak, Simon, Wang, Wenjia, Tang, Tao

论文摘要

在科学实验可能非常昂贵的时代,多保真模拟器为具有成本效益的预测科学计算提供了有用的工具。对于科学应用,实验者通常会受到严格的计算预算的限制,因此希望(i)通过仔细的实验​​设计最大程度地提高多性模拟器的预测能力,(ii)确保该模型具有一些信心,并具有一些信心。但是,现有的设计方法不会共同解决目标(i)和(ii)。我们提出了一种新颖的堆叠设计方法,可以解决这两个目标。首先引入了多层复制核Hilbert Space(RKHS)插装器来构建模拟器,在该模拟器下,我们的堆叠设计为设计多效率运行提供了一种顺序的方法,以便在规律性假设下满足$ε> 0 $的所需预测误差。然后,我们证明了一种新颖的成本复杂性定理,在此多层次插值器下,在计算成本(对于训练数据模拟)上建立了一个限制,以实现$ε$的预测限制。该结果提供了有关拟议多保真方法在传统的RKHS插值器中改善的条件的新见解。最后,我们证明了在模拟实验套件中堆叠设计的有效性,以及用于有限元分析的应用。

In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multi-level reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $ε> 0$ is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multi-level interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of $ε$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源