论文标题
关于欧瓦岛的非交流性伊瓦岛理论和欧拉系统的衍生物
On non-commutative Iwasawa theory and derivatives of Euler systems
论文作者
论文摘要
我们在[20]中引入的降低的确定性函数理论方面描述了特征零的dedekind域的有限尺寸可分离代数中的相对$ k_0 $ - 订单组。然后,我们使用这种方法来制定每个奇数$ p $,这是一个非交易性$ p $ -adic iwasawa理论的主要猜想,用于$ \ mathbb {g} _m $在任意数字字段上。该猜想预测了我们定义的规范鲁宾史塔非交易性欧拉系统与$ \ mathbb {z} _p $的紧凑型$ p $ - 阿迪斯的共同体之间的精确关系由于Ritter和Weiss以及Coates,Fukaya,Kato,Sujatha和Venjakob,非公道性硫川理论中的主要猜想。我们的方法还提出了针对鲁宾 - 统计的非共同欧拉系统的精确猜想的“更高衍生公式”,该系统将经典的总体猜想扩展到了任意数字字段的Galois扩展的设置。我们提供了有力的证据,以支持这两种猜想的情况,以设置完全真实领域的任意Galois CM扩展。此外,在一般情况下,我们表明可以将猜想组合起来,以建立一种新的策略,以获得证据,以支持$ \ mathbb {g} _m $在任意的galois扩展方面的tamagawa数字猜想。
We describe the relative $K_0$-groups of orders in finite dimensional separable algebras over the fraction fields of Dedekind domains of characteristic zero in terms of the theory of reduced determinant functors introduced in [20]. We then use this approach to formulate, for each odd prime $p$, a main conjecture of non-commutative $p$-adic Iwasawa theory for $\mathbb{G}_m$ over arbitrary number fields. This conjecture predicts a precise relation between a canonical Rubin-Stark non-commutative Euler system that we define and the compactly supported $p$-adic cohomology of $\mathbb{Z}_p$ and simultaneously extends both the higher rank (commutative) main conjecture for $\mathbb{G}_m$ studied by Kurihara and the present authors and the formalism of main conjectures in non-commutative Iwasawa theory due to Ritter and Weiss and to Coates, Fukaya, Kato, Sujatha and Venjakob. Our approach also suggests a precise conjectural `higher derivative formula' for the Rubin-Stark non-commutative Euler system that extends the classical Gross-Stark Conjecture to the setting of Galois extensions of arbitrary number fields. We present strong evidence in support of both of these conjectures in the setting of arbitrary Galois CM extensions of totally real fields. In addition, in the general case, we show that the conjectures can be combined to establish a new strategy for obtaining evidence in support of the equivariant Tamagawa Number Conjecture for $\mathbb{G}_m$ over arbitrary Galois extensions.