论文标题
索引合奏的置换熵:量化热化动力学
Permutation entropy of indexed ensembles: Quantifying thermalization dynamics
论文作者
论文摘要
我们介绍了“ pi-entropy” $π(\tildeρ)$(索引集合的排列熵),以量化不同初始状态的集合$ρ$在相同动力学下演变的不同初始状态的复合动力学。我们发现$π(\tildeρ)$是热力学熵$ s(ρ)$的出色代理,但在计算上效率更高。我们研究了1-D和2-D迭代地图,发现$π(\tildeρ)$ Dynamics区分了各种系统时间尺度,并跟踪全局信息的损失,因为整体放松到平衡。对于通常混乱的系统,有一个通用的S形松弛对平衡,并且这种放松的特征是\ emph {Shuffling}时尺度与系统的Lyapunov指数相关。对于Chirikov Standard Map,一个具有混合相空间的系统,混沌具有非线性踢强度$ K $,我们发现对于高$ K $,$π(\tildeρ)$的表现就像均匀的双曲线2-D Cat Map一样。对于低$ k $,我们看到了带有与混乱制度的放松信封的定期行为,但频率取决于混合相空间中初始合奏的大小和位置以及$ k $。我们讨论$π(\tildeρ)$如何适应实验性工作及其在量化复杂系统如何从低熵变为高熵状态的一般实用程序。
We introduce `PI-Entropy' $Π(\tildeρ)$ (the Permutation entropy of an Indexed ensemble) to quantify mixing due to complex dynamics for an ensemble $ρ$ of different initial states evolving under identical dynamics. We find that $Π(\tildeρ)$ acts as an excellent proxy for the thermodynamic entropy $S(ρ)$ but is much more computationally efficient. We study 1-D and 2-D iterative maps and find that $Π(\tildeρ)$ dynamics distinguish a variety of system time scales and track global loss of information as the ensemble relaxes to equilibrium. There is a universal S-shaped relaxation to equilibrium for generally chaotic systems, and this relaxation is characterized by a \emph{shuffling} timescale that correlates with the system's Lyapunov exponent. For the Chirikov Standard Map, a system with a mixed phase space where the chaos grows with nonlinear kick strength $K$, we find that for high $K$, $Π(\tildeρ)$ behaves like the uniformly hyperbolic 2-D Cat Map. For low $K$ we see periodic behavior with a relaxation envelope resembling those of the chaotic regime, but with frequencies that depend on the size and location of the initial ensemble in the mixed phase space as well as $K$. We discuss how $Π(\tildeρ)$ adapts to experimental work and its general utility in quantifying how complex systems change from a low entropy to a high entropy state.