论文标题
三聚体量子自旋液体中的蜂窝状原子阵列
Trimer quantum spin liquid in a honeycomb array of Rydberg atoms
论文作者
论文摘要
量子自旋液体难以捉摸,但具有远程量子纠缠特征的强相关量子状态的范式实例。最近,在Ruby lattice在Rydberg Atoms的系统中观察到了一个间隙拓扑$ \ MATHBB {Z} _2 $旋转液体的直接签名。在这里,我们说明了rydberg原子蜂窝阵列中一种根本不同类别的自旋液体的具体实现。探索该系统的量子相图,并使用密度 - 矩阵重新归一化组和精确的对角线化模拟进行了表征,并解释了几个密度波级的相位。更有趣的是,在瑞德伯格(Rydberg)封锁半径内的第三矿山原子原理中,我们发现了一个新颖的基础状态 - 具有紧急的$ \ mathrm {u}(1)\ times \ times \ times \ times \ times \ mathrm {u}(1)$ local对称 - 局部对称 - 由经典的classical {blimer comportian comportian \ Itirime} trimerer}组成。可以通过动力学制备来增强这种三聚体旋转液态的保真度,我们通过与激光驱动器平稳关闭相关的基于rydberg-blockade的投影机制来解释。最后,我们在现实的实验参数下讨论了三聚体旋转液相的鲁棒性,并证明我们的建议很容易在当前的rydberg原子量子模拟器中实现。
Quantum spin liquids are elusive but paradigmatic examples of strongly correlated quantum states that are characterized by long-range quantum entanglement. Recently, the direct signatures of a gapped topological $\mathbb{Z}_2$ spin liquid have been observed in a system of Rydberg atoms arrayed on the ruby lattice. Here, we illustrate the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms. Exploring the quantum phase diagram of this system using both density-matrix renormalization group and exact diagonalization simulations, several density-wave-ordered phases are characterized and their origins explained. More interestingly, in the regime where third-nearest-neighbor atoms lie within the Rydberg blockade radius, we find a novel ground state -- with an emergent $\mathrm{U}(1)\times \mathrm{U}(1)$ local symmetry -- formed from superpositions of classical {\it trimer} configurations on the dual triangular lattice. The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation, which we explain by a Rydberg-blockade-based projection mechanism associated with the smooth turnoff of the laser drive. Finally, we discuss the robustness of the trimer spin liquid phase under realistic experimental parameters and demonstrate that our proposal can be readily implemented in current Rydberg atom quantum simulators.