论文标题
无监督的句法控制术产生具有抽象含义表示形式
Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations
论文作者
论文摘要
近年来,句法控制的释义产生已成为新兴的研究方向。大多数现有的方法都需要带注释的释义对进行培训,因此扩展到新领域的代价很高。另一方面,无监督的方法不需要释义对,但在句法控制和产生的释义质量方面的性能相对较差。在本文中,我们证明了利用抽象含义表示(AMR)可以大大提高无监督的语法控制释义生成的性能。我们提出的模型,AMR增强的解释器(AMRPG),分别编码AMR图和输入句子的组成部分分解为两个分离的语义和句法嵌入。然后,学会了解码器从语义和句法嵌入中重建输入句子。我们的实验表明,与现有的无监督方法相比,AMRPG在定量和定性上生成更准确的句法控制措施。我们还证明,AMRPG生成的释义可用于数据增强,以改善NLP模型的鲁棒性。
Syntactically controlled paraphrase generation has become an emerging research direction in recent years. Most existing approaches require annotated paraphrase pairs for training and are thus costly to extend to new domains. Unsupervised approaches, on the other hand, do not need paraphrase pairs but suffer from relatively poor performance in terms of syntactic control and quality of generated paraphrases. In this paper, we demonstrate that leveraging Abstract Meaning Representations (AMR) can greatly improve the performance of unsupervised syntactically controlled paraphrase generation. Our proposed model, AMR-enhanced Paraphrase Generator (AMRPG), separately encodes the AMR graph and the constituency parse of the input sentence into two disentangled semantic and syntactic embeddings. A decoder is then learned to reconstruct the input sentence from the semantic and syntactic embeddings. Our experiments show that AMRPG generates more accurate syntactically controlled paraphrases, both quantitatively and qualitatively, compared to the existing unsupervised approaches. We also demonstrate that the paraphrases generated by AMRPG can be used for data augmentation to improve the robustness of NLP models.