论文标题

来自层间耦合的多属性图形信号的产品图形学习

Product Graph Learning from Multi-attribute Graph Signals with Inter-layer Coupling

论文作者

Zhang, Chenyue, He, Yiran, Wai, Hoi-To

论文摘要

本文考虑从多属性图形信号学习产品图。我们的工作是由多层网络的广泛存在的动机,这些网络在图层内和跨图层中具有相互作用。专注于具有均匀层的产品图设置,我们提出了双变量多项式图滤波器模型。然后,我们考虑通过适应现有光谱方法的拓扑推理问题。我们为所需的光谱估计步骤提出了两种解决方案:通过将多属性数据展开到矩阵中的简化解决方案,以及通过最近的Kronecker产品分解(NKD)的精确解决方案。有趣的是,我们表明,强层间耦合可以降低展开解决方案的性能,而NKD解决方案对层间耦合效应具有鲁棒性。数值实验显示了我们方法的功效。

This paper considers learning a product graph from multi-attribute graph signals. Our work is motivated by the widespread presence of multilayer networks that feature interactions within and across graph layers. Focusing on a product graph setting with homogeneous layers, we propose a bivariate polynomial graph filter model. We then consider the topology inference problems thru adapting existing spectral methods. We propose two solutions for the required spectral estimation step: a simplified solution via unfolding the multi-attribute data into matrices, and an exact solution via nearest Kronecker product decomposition (NKD). Interestingly, we show that strong inter-layer coupling can degrade the performance of the unfolding solution while the NKD solution is robust to inter-layer coupling effects. Numerical experiments show efficacy of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源