论文标题

平衡效用与公平性最大化(技术报告)

Balancing Utility and Fairness in Submodular Maximization (Technical Report)

论文作者

Wang, Yanhao, Li, Yuchen, Bonchi, Francesco, Wang, Ying

论文摘要

suppoular函数最大化是一个基本的组合优化问题,其中包括大量应用 - 包括数据摘要,影响最大化和建议。在许多问题中,目标是找到一个解决方案,该解决方案最大化所有用户的平均实用程序,每个用户的实用程序都是由单调subsodular函数定义的。但是,当用户人口由几个人口组组成时,另一个关键问题是该公用事业是否在不同的组之间分布。尽管\ emph {cortility}和\ emph {公平}目标都是可取的,但它们可能相互矛盾,据我们所知,很少关注共同优化它们。 为了填补这一空白,我们提出了一个新问题,称为\ emph {bicriteria subpodular maximization}(BSM),以平衡效用和公平性。具体而言,它需要找到一个固定尺寸的解决方案来最大化效用函数,但要取决于公平函数的值不低于阈值。由于BSM在任何常数因素内都是不合适的,因此我们专注于设计有效的实例依赖性近似方案。我们的算法提案包括两种方法,具有不同的近似因素,通过将BSM实例转换为其他下义优化问题实例获得。使用现实世界和合成数据集,我们在三个次管法最大化问题中展示了我们提出的方法的应用:最大覆盖范围,影响最大化和设施位置。

Submodular function maximization is a fundamental combinatorial optimization problem with plenty of applications -- including data summarization, influence maximization, and recommendation. In many of these problems, the goal is to find a solution that maximizes the average utility over all users, for each of whom the utility is defined by a monotone submodular function. However, when the population of users is composed of several demographic groups, another critical problem is whether the utility is fairly distributed across different groups. Although the \emph{utility} and \emph{fairness} objectives are both desirable, they might contradict each other, and, to the best of our knowledge, little attention has been paid to optimizing them jointly. To fill this gap, we propose a new problem called \emph{Bicriteria Submodular Maximization} (BSM) to balance utility and fairness. Specifically, it requires finding a fixed-size solution to maximize the utility function, subject to the value of the fairness function not being below a threshold. Since BSM is inapproximable within any constant factor, we focus on designing efficient instance-dependent approximation schemes. Our algorithmic proposal comprises two methods, with different approximation factors, obtained by converting a BSM instance into other submodular optimization problem instances. Using real-world and synthetic datasets, we showcase applications of our proposed methods in three submodular maximization problems: maximum coverage, influence maximization, and facility location.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源