论文标题

多元合奏后处理的生成机器学习方法

Generative machine learning methods for multivariate ensemble post-processing

论文作者

Chen, Jieyu, Janke, Tim, Steinke, Florian, Lerch, Sebastian

论文摘要

基于多个数值天气预测模型的多次运行的集合天气预测通常显示系统错误,需要后处理以获得可靠的预测。在许多实际应用中,准确地对多元依赖性进行建模至关重要,并且已经提出了各种多元后加工方法的方法,即首先在每个边缘中首先对集合预测分别进行后处理,然后通过COP恢复多元依赖性。这些两步方法具有共同的关键局限性,特别是在建模依赖项时包括其他预测因素的困难。我们提出了一种基于生成机器学习的新型多元后处理方法,以应对这些挑战。在这类新的非参数数据驱动的分布回归模型中,来自多变量预测分布的样品是直接作为生成神经网络的输出获得的。通过优化适当的评分规则来训练生成模型,该规则衡量生成的数据和观察到的数据之间的差异,以外源输入变量为条件。我们的方法不需要关于单变量分布或多元依赖性的参数假设,并且可以合并任意预测因子。在两个关于德国气象站的多元温度和风速预测的案例研究中,我们的生成模型对最先进的方法显示出显着改善,尤其是改善了空间依赖性的表示。

Ensemble weather forecasts based on multiple runs of numerical weather prediction models typically show systematic errors and require post-processing to obtain reliable forecasts. Accurately modeling multivariate dependencies is crucial in many practical applications, and various approaches to multivariate post-processing have been proposed where ensemble predictions are first post-processed separately in each margin and multivariate dependencies are then restored via copulas. These two-step methods share common key limitations, in particular the difficulty to include additional predictors in modeling the dependencies. We propose a novel multivariate post-processing method based on generative machine learning to address these challenges. In this new class of nonparametric data-driven distributional regression models, samples from the multivariate forecast distribution are directly obtained as output of a generative neural network. The generative model is trained by optimizing a proper scoring rule which measures the discrepancy between the generated and observed data, conditional on exogenous input variables. Our method does not require parametric assumptions on univariate distributions or multivariate dependencies and allows for incorporating arbitrary predictors. In two case studies on multivariate temperature and wind speed forecasting at weather stations over Germany, our generative model shows significant improvements over state-of-the-art methods and particularly improves the representation of spatial dependencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源