论文标题
变形IR:四维全息理论的新IR固定点
A deformed IR: a new IR fixed point for four-dimensional holographic theories
论文作者
论文摘要
在全息图中,非零密度下的量子系统的IR行为是通过极端带电的黑洞的近地平线几何形状来描述的。通常认为,对于$ s^3 $的系统,这种近地平线几何形状为$ ads_2 \ times s^3 $。我们表明情况并非如此:$ ads_2 \ times s^3 $在地平线上爆炸的通用静态,非球形扰动,表明它不是稳定的IR固定点。然后,我们构建了一个新的近地平线几何形状,该几何形状仅在$ so(3)$(而不是$ SO(4)$)对称性下是不变的,并表明它稳定在$ so(3)$ - 保留扰动(但通常不是)。我们还表明,一组开放式的非Xtremal,$ SO(3)$ - 不变的电荷黑洞在极限$ t \至0 $的情况下开发了这种新的近地平线几何形状。我们的新IR几何形状仍然具有$ ADS_2 $对称性,但它在变形的球体上扭曲。我们还构建了许多其他近地平线几何形状,其中包括一些没有旋转对称性的,但期望它们都是不稳定的IR固定点。
In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on $S^3$, this near horizon geometry is $AdS_2\times S^3 $. We show that this is not the case: generic static, nonspherical perturbations of $AdS_2\times S^3 $ blow up at the horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon geometry which is invariant under only $SO(3)$ (and not $SO(4)$) symmetry and show that it is stable to $SO(3)$-preserving perturbations (but not in general). We also show that an open set of nonextremal, $SO(3)$-invariant charged black holes develop this new near horizon geometry in the limit $T \to 0$. Our new IR geometry still has $AdS_2$ symmetry, but it is warped over a deformed sphere. We also construct many other near horizon geometries, including some with no rotational symmetries, but expect them all to be unstable IR fixed points.