论文标题
使用Hamiltonian Monte Carlo进行有效的引力波搜索
Efficient Gravitational Wave Searches with Pulsar Timing Arrays using Hamiltonian Monte Carlo
论文作者
论文摘要
脉冲星时阵列(PTA)通过寻找脉冲到达时间的相关偏差来检测低频引力波(GWS)。当前的贝叶斯搜索使用Markov Chain Monte Carlo(MCMC)方法,该方法难以对PTA和GW信号进行建模所需的大量参数。随着脉冲星的数据跨度和数量的增加,此问题只会恶化。一种替代的蒙特卡洛采样方法,汉密尔顿蒙特卡洛(HMC),利用汉密尔顿动力学来产生由模型可能性一阶梯度告知的样本建议。反过来,这使其可以更快地收敛到高维分布。我们在搜索各向同性随机GW背景中实现HMC作为替代抽样方法,并表明该方法与标准MCMC技术进行类似的分析产生了等效的统计结果,同时需要少100-200倍的样本。我们表明,HMC样本生成量表的速度为$ \ MATHCAL {O}(N_ \ MATHRM {PSR}^{5/4})$,其中$ n_ \ Mathrm {psrm {psrm {psr} $是脉冲星的数量,与$ \ \ \ \ \ \ \ \ \ \ mathcal {o}(n_ \ mathrm mathrm} $ cosr相比,这些因素抵消了使用HMC生成样品所需的时间增加的时间,证明了采用HMC技术的PTA的价值。
Pulsar timing arrays (PTAs) detect low-frequency gravitational waves (GWs) by looking for correlated deviations in pulse arrival times. Current Bayesian searches use Markov Chain Monte Carlo (MCMC) methods, which struggle to sample the large number of parameters needed to model the PTA and GW signals. As the data span and number of pulsars increase, this problem will only worsen. An alternative Monte Carlo sampling method, Hamiltonian Monte Carlo (HMC), utilizes Hamiltonian dynamics to produce sample proposals informed by first-order gradients of the model likelihood. This in turn allows it to converge faster to high dimensional distributions. We implement HMC as an alternative sampling method in our search for an isotropic stochastic GW background, and show that this method produces equivalent statistical results to similar analyses run with standard MCMC techniques, while requiring 100-200 times fewer samples. We show that the speed of HMC sample generation scales as $\mathcal{O}(N_\mathrm{psr}^{5/4})$ where $N_\mathrm{psr}$ is the number of pulsars, compared to $\mathcal{O}(N_\mathrm{psr}^2)$ for MCMC methods. These factors offset the increased time required to generate a sample using HMC, demonstrating the value of adopting HMC techniques for PTAs.