论文标题
基本符号群的正态定理相对于交替形式
Normality theorem for elementary symplectic group with respect to an alternating form
论文作者
论文摘要
A.A. Suslin证明了基本线性群的正态定理,该群体说,在相同大小相同的一般线性组中,在统一的统一环上,大于或等于3的基本线性群正常。随后,V.I. Kopeiko扩展了SUSLIN的结果,该结果针对均匀大小的标准偏度对称矩阵定义。在这里,我们概括了Kopeiko的结果,该结果是针对Pfaffian One的任何可逆偏斜矩阵定义的。
A.A. Suslin proved a normality theorem for an elementary linear group, which says that an elementary linear group of size bigger than or equal to 3 over a commutative ring with unity is normal in the general linear group of same size. Subsequently, V.I. Kopeiko extended this result of Suslin for a symplectic group defined with respect to the standard skew-symmetric matrix of even size. Here we generalise the result of Kopeiko for a symplectic group defined with respect to any invertible skew-symmetric matrix of even size of Pfaffian one.