论文标题
部分可观测时空混沌系统的无模型预测
The André-Quillen cohomology of commutative monoids
论文作者
论文摘要
我们观察到,贝克模块的交换单体是与单型相关的分级交换环上的完全模块。在此鉴定下,交换性单体的quillen共同体是André-Quillen coolomology用于分级通勤环的特殊情况,概括了Kurdiani和Pirashvili的结果。为了验证这一点,我们开发了必要的分级形式主义。 Pierre Grillet为计算Quillen共同学开发的部分科司复合物似乎是Michael Barr建议的Harrison Cochain复合体的修改的开始。
We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of André-Quillen cohomology for graded commutative rings, generalizing a result of Kurdiani and Pirashvili. To verify this we develop the necessary grading formalism. The partial cochain complex developed by Pierre Grillet for computing Quillen cohomology appears as the start of a modification of the Harrison cochain complex suggested by Michael Barr.