论文标题
通过对社交三方图的分解注意,基于排名的小组识别
Ranking-based Group Identification via Factorized Attention on Social Tripartite Graph
论文作者
论文摘要
由于社交媒体的扩散,越来越多的用户在日常生活中搜索并加入小组活动。这就提出了对基于排名的小组识别(RGI)任务的研究,即向用户推荐组。该任务的主要挑战是如何有效,有效地利用用户在线行为的项目互动和小组参与。尽管图形神经网络(GNN)的最新发展成功地汇总了社交和用户项目的互动,但是它们无法全面解决此RGI任务。在本文中,我们提出了一个新型基于GNN的框架,称为组识别(CFAG)的上下文化分解注意。我们设计了三方图卷积层,以汇总用户,组和项目之间不同类型的社区的信息。为了应对数据稀疏性问题,我们设计了一种新型的传播增强层(PA)层,该层基于我们提出的分解注意机制。 PA层有效地了解非邻居节点的相关性,以改善向用户的信息传播。三个基准数据集的实验结果验证了CFAG的优势。进行了其他详细研究,以证明所提出的框架的有效性。
Due to the proliferation of social media, a growing number of users search for and join group activities in their daily life. This develops a need for the study on the ranking-based group identification (RGI) task, i.e., recommending groups to users. The major challenge in this task is how to effectively and efficiently leverage both the item interaction and group participation of users' online behaviors. Though recent developments of Graph Neural Networks (GNNs) succeed in simultaneously aggregating both social and user-item interaction, they however fail to comprehensively resolve this RGI task. In this paper, we propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG). We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items. To cope with the data sparsity issue, we devise a novel propagation augmentation (PA) layer, which is based on our proposed factorized attention mechanism. PA layers efficiently learn the relatedness of non-neighbor nodes to improve the information propagation to users. Experimental results on three benchmark datasets verify the superiority of CFAG. Additional detailed investigations are conducted to demonstrate the effectiveness of the proposed framework.