论文标题
Dyob-Slam:动态对象跟踪大满贯系统
DyOb-SLAM : Dynamic Object Tracking SLAM System
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Simultaneous Localization & Mapping (SLAM) is the process of building a mutual relationship between localization and mapping of the subject in its surrounding environment. With the help of different sensors, various types of SLAM systems have developed to deal with the problem of building the relationship between localization and mapping. A limitation in the SLAM process is the lack of consideration of dynamic objects in the mapping of the environment. We propose the Dynamic Object Tracking SLAM (DyOb-SLAM), which is a Visual SLAM system that can localize and map the surrounding dynamic objects in the environment as well as track the dynamic objects in each frame. With the help of a neural network and a dense optical flow algorithm, dynamic objects and static objects in an environment can be differentiated. DyOb-SLAM creates two separate maps for both static and dynamic contents. For the static features, a sparse map is obtained. For the dynamic contents, a trajectory global map is created as output. As a result, a frame to frame real-time based dynamic object tracking system is obtained. With the pose calculation of the dynamic objects and camera, DyOb-SLAM can estimate the speed of the dynamic objects with time. The performance of DyOb-SLAM is observed by comparing it with a similar Visual SLAM system, VDO-SLAM and the performance is measured by calculating the camera and object pose errors as well as the object speed error.