论文标题
通过学习与专家的混合来预测和计划,安全的现实世界自动驾驶
Safe Real-World Autonomous Driving by Learning to Predict and Plan with a Mixture of Experts
论文作者
论文摘要
自动驾驶汽车的目标是安全,舒适地驾驶公共道路。为了执行安全,传统的计划方法依靠手工制作的规则来产生轨迹。另一方面,基于机器学习的系统可以通过数据进行扩展,并能够学习更多复杂的行为。但是,他们常常忽略试剂和自动驾驶车辆轨迹分布可以利用以提高安全性。在本文中,我们建议使用统一的神经网络体系结构进行预测和计划,对自动驾驶汽车和其他道路代理的多个未来轨迹进行建模。在推理期间,我们选择计划轨迹,该计划轨迹可将成本降至最低,并考虑到安全性和预测的概率。我们的方法不取决于任何基于规则的计划者进行轨迹生成或优化,可以通过更多的培训数据进行改进,并且易于实施。我们通过现实的模拟器广泛评估我们的方法,并表明预测的轨迹分布对应于不同的驾驶曲线。我们还成功地将其部署在城市公共道路上的自动驾驶汽车上,证实它可以安全地驾驶而不会损害舒适感。可以在https://woven.mobi/safepathnet上获得培训和测试我们模型的训练和测试代码和道路测试的视频。
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet