论文标题
PECVD生长的钻石中的二维自旋系统具有可调密度和长连贯性,可增强量子感应和模拟
Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation
论文作者
论文摘要
旋转系统以可调密度和降低的尺寸设计,可以在量子传感和仿真方面取得许多进步。钻石中的缺陷,例如氮呈(NV)中心和替代氮(P1中心),是尤其有希望探索的固态平台。但是,能够控制连贯的二维自旋系统并表征其特性(例如密度,深度限制和连贯性)的能力是一项出色的材料挑战。我们提出了一种精致的方法($ \ gtrsim $ 1 ppm $ \ cdot $ nm),2D氮和钻石中的NV层,在等离子增强化学蒸汽沉积(PECVD)期间使用delta掺杂。我们采用两种传统材料技术,例如次级离子质谱法(SIMS),以及基于NV自旋反应的测量值,以表征P1和NV层的密度和尺寸。我们发现P1密度为5-10 ppm $ \ cdot $ nm,NV密度在1至3.5 ppm $ \ cdot $ nm之间,通过电子辐照剂量调整了调谐,并且自旋层深度限制至1.6 nm。我们还观察到P1与NV中心的高度(最高0.74),以及可重复的长NV相干时间,由与工程P1和NV自旋浴室的偶极相互作用主导。
Systems of spins engineered with tunable density and reduced dimensionality enable a number of advancements in quantum sensing and simulation. Defects in diamond, such as nitrogen-vacancy (NV) centers and substitutional nitrogen (P1 centers), are particularly promising solid-state platforms to explore. However, the ability to controllably create coherent, two-dimensional spin systems and characterize their properties, such as density, depth confinement, and coherence is an outstanding materials challenge. We present a refined approach to engineer dense ($\gtrsim$1 ppm$\cdot$nm), 2D nitrogen and NV layers in diamond using delta-doping during plasma-enhanced chemical vapor deposition (PECVD) epitaxial growth. We employ both traditional materials techniques, e.g. secondary ion mass spectrometry (SIMS), alongside NV spin decoherence-based measurements to characterize the density and dimensionality of the P1 and NV layers. We find P1 densities of 5-10 ppm$\cdot$nm, NV densities between 1 and 3.5 ppm$\cdot$nm tuned via electron irradiation dosage, and depth confinement of the spin layer down to 1.6 nm. We also observe high (up to 0.74) ratios of P1 to NV centers and reproducibly long NV coherence times, dominated by dipolar interactions with the engineered P1 and NV spin baths.