论文标题

UV R-CNN:稳定而高效的人姿势估计

UV R-CNN: Stable and Efficient Dense Human Pose Estimation

论文作者

Jia, Wenhe, Zhou, Yilin, Zhu, Xuhan, Hu, Mengjie, Liu, Chun, Song, Qing

论文摘要

密集的姿势估计是实例级人类分析的密集3D预测任务,旨在将人类像素从RGB图像映射到人体的3D表面。由于大量的表面点回归,与其他基于区域的人类实例分析任务相比,训练过程似乎很容易崩溃。通过分析现有密集姿势估计模型的损失公式,我们引入了一种新颖的点回归损失函数,名为密集点}损失以稳定训练进度,以及一种新的平衡减肥策略来处理多任务损失。有了上述新颖性,我们提出了一个全新的建筑,名为UV R-CNN。如果没有其他任务的辅助监督和外部知识,则UV R-CNN可以在密集的姿势模型培训进度中处理许多复杂的问题,从而在密集的coco-coco验证中,在resnet-50-fppn-fplepn peatuctor plemutiations中,在coco-coco验证的范围内实现了66.1%$ ap_ {gps} $和66.1%$ ap_ {gpsm} $。

Dense pose estimation is a dense 3D prediction task for instance-level human analysis, aiming to map human pixels from an RGB image to a 3D surface of the human body. Due to a large amount of surface point regression, the training process appears to be easy to collapse compared to other region-based human instance analyzing tasks. By analyzing the loss formulation of the existing dense pose estimation model, we introduce a novel point regression loss function, named Dense Points} loss to stable the training progress, and a new balanced loss weighting strategy to handle the multi-task losses. With the above novelties, we propose a brand new architecture, named UV R-CNN. Without auxiliary supervision and external knowledge from other tasks, UV R-CNN can handle many complicated issues in dense pose model training progress, achieving 65.0% $AP_{gps}$ and 66.1% $AP_{gpsm}$ on the DensePose-COCO validation subset with ResNet-50-FPN feature extractor, competitive among the state-of-the-art dense human pose estimation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源