论文标题

一种基准测试随机隔室模型的数值解的方法

An approach for benchmarking the numerical solutions of stochastic compartmental models

论文作者

Hale, Alison C, Jewell, Christopher P

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

An approach is introduced for comparing the estimated states of stochastic compartmental models for an epidemic or biological process with analytically obtained solutions from the corresponding system of ordinary differential equations (ODEs). Positive integer valued samples from a stochastic model are generated numerically at discrete time intervals using either the Reed-Frost chain Binomial or Gillespie algorithm. The simulated distribution of realisations is compared with an exact solution obtained analytically from the ODE model. Using this novel methodology this work demonstrates it is feasible to check that the realisations from the stochastic compartmental model adhere to the ODE model they represent. There is no requirement for the model to be in any particular state or limit. These techniques are developed using the stochastic compartmental model for a susceptible-infected-recovered (SIR) epidemic process. The Lotka-Volterra model is then used as an example of the generality of the principles developed here. This approach presents a way of testing/benchmarking the numerical solutions of stochastic compartmental models, e.g. using unit tests, to check that the computer code along with its corresponding algorithm adheres to the underlying ODE model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源