论文标题
宇宙拓扑。第一部分。从圆圈搜索中限制可定向的欧几里得歧管
Cosmic topology. Part I. Limits on orientable Euclidean manifolds from circle searches
论文作者
论文摘要
一般相对论的爱因斯坦田间方程在时空的每个点都限制了局部曲率,但对宇宙的全球拓扑却一无所知。事实证明,宇宙微波背景各向异性是最强大的非客气拓扑结构的探测器,因为在$λ$ CDM之内,这些各向异性具有良好的统计特性,该信号主要来自以观察者(最后一个散射表面)的薄球形壳,几乎覆盖了整个天空。在微波背景中,宇宙拓扑的最通用特征是与温度和极化模式相匹配的圆对。在WMAP或Planck温度数据中,没有看到这样的圆对,这意味着通过我们位置的宇宙周围的最短环路超过了最后一个散射表面的共同直径的98.5%。我们将这种通用约束转换为对参数的限制,这些参数表征了九种可能的非平凡的可定向欧几里得拓扑的歧管,并提供了计算这些约束的代码。在除最简单的情况下,在空间中最短的非摘要环可以避免的情况下,并且比最后一个散射表面的直径较短,其因子的范围为2至至少6个。这意味着在观察上,更广泛的流形范围在观察方面是允许的,而不是广受赞赏。探测这些歧管将需要比匹配的圆圈更多的微妙统计签名,例如谐波系数的非对角线相关性。
The Einstein field equations of general relativity constrain the local curvature at every point in spacetime, but say nothing about the global topology of the Universe. Cosmic microwave background anisotropies have proven to be the most powerful probe of non-trivial topology since, within $Λ$CDM, these anisotropies have well-characterized statistical properties, the signal is principally from a thin spherical shell centered on the observer (the last scattering surface), and space-based observations nearly cover the full sky. The most generic signature of cosmic topology in the microwave background is pairs of circles with matching temperature and polarization patterns. No such circle pairs have been seen above noise in the WMAP or Planck temperature data, implying that the shortest non-contractible loop around the Universe through our location is longer than 98.5% of the comoving diameter of the last scattering surface. We translate this generic constraint into limits on the parameters that characterize manifolds with each of the nine possible non-trivial orientable Euclidean topologies, and provide a code which computes these constraints. In all but the simplest cases, the shortest non-contractible loop in the space can avoid us, and be shorter than the diameter of the last scattering surface by a factor ranging from 2 to at least 6. This result implies that a broader range of manifolds is observationally allowed than widely appreciated. Probing these manifolds will require more subtle statistical signatures than matched circles, such as off-diagonal correlations of harmonic coefficients.