论文标题

部分可观测时空混沌系统的无模型预测

Gregory-Laflamme encounters Superradiance

论文作者

Dias, Oscar J. C., Ishii, Takaaki, Murata, Keiju, Santos, Jorge E., Way, Benson

论文摘要

我们研究了重力扰动对旋转黑弦的稳定性的超级散射的影响,重点是六维相等的米尔斯 - 粘合剂黑色弦。我们发现,迅速旋转的黑色弦对弦长的范围内的重力超级模式不稳定。不稳定性之所以发生,是因为沿弦方向的动量会产生潜在的障碍,从而允许限制超级模式。然而,五个维度的迈尔斯 - 泥浆黑洞没有稳定的粒子轨道,因此,与其他已知的超级系统不同,这些黑弦对于具有足够高的方位角模式数的扰动仍然稳定 - 这是“有限$ $ m $ $”的超级不稳定。对于某些参数,这种不稳定性与Gregory-Laflamme的不稳定性竞争,但否则独立存在。这种不稳定性的发作是退化的,分支到多个稳态溶液。本文是三部曲的第一篇:在接下来的两部中,我们构建了从超级发作(“黑色谐振弦”和“螺旋黑色琴弦”)中出现的两个不同的旋转字符串系列。我们认为5维的Kerr黑色弦中存在类似的物理学,但在$ d> 6 $相等的Myers-Perry黑弦中不存在。

We investigate the effect of superradiant scattering of gravitational perturbations on the stability of rotating black strings, focusing on the six dimensional equal-spinning Myers-Perry black string. We find that rapidly rotating black strings are unstable to gravitational superradiant modes within a bounded range of string lengths. The instability occurs because momentum along the string direction creates a potential barrier that allows for the confinement of superradiant modes. Yet, five dimensional Myers-Perry black holes do not have stable particle orbits so, unlike other known superradiant systems, these black strings remain stable to perturbations with sufficiently high azimuthal mode number -- this is a `finite-$m$' superradiant instability. For some parameters, this instability competes with the Gregory-Laflamme instability, but otherwise exists independently. The onset of this instability is degenerate and branches to multiple steady-state solutions. This paper is the first of a trilogy: in the next two, we construct two distinct families of rotating strings emerging from the superradiant onset (the `black resonator strings' and `helical black strings'). We argue that similar physics is present in 5-dimensional Kerr black strings, but not in $D>6$ equal-spinning Myers-Perry black strings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源