论文标题

函数$ \ check {\ mathcal {f}}^g_p $在$ k_0 $的级别

The functor $\check{\mathcal{F}}^G_P$ at the level of $K_0$

论文作者

Jena, Akash

论文摘要

令$ g $为$ p $ - adic lie Group,带有还原的lie代数$ \ mathfrak {g} $。用$ d(g)$表示本地分析分布代数为$ g $。 Orlik-trauch和Agrawal-Strauch研究了在$ \ Mathfrak {G} $的各个类别上定义的某些确切函数 - 在本地分析$ G $ -Presentations或$ d(g)$ - 模块的类别中具有图像的表示。在本文中,我们证明,对于$ d(g)$ - 模块的适当定义类别,该函子在Grothendieck组的水平上产生了注射式同构。我们还解释了该函子如何在Grothendieck组级别与翻译函数相互作用。

Let $G$ be a $p$-adic Lie group with reductive Lie algebra $\mathfrak{g}$. Denote by $D(G)$ the locally analytic distribution algebra of $G$. Orlik-Strauch and Agrawal-Strauch have studied certain exact functors defined on various categories of $\mathfrak{g}$-representations with image in the category of locally analytic $G$-representations or $D(G)$-modules. In this paper we prove that for suitably defined categories of $D(G)$-modules, this functor gives rise to injective homomorphisms at the level of Grothendieck groups. We also explain how this functor interacts with translation functors at the level of Grothendieck groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源