论文标题
亚历山德罗夫的各向异性毛细血管高空曲面的定理
Alexandrov's theorem for anisotropic capillary hypersurfaces in the half-space
论文作者
论文摘要
在本文中,我们表明,任何嵌入的毛细血管超表面在半空间中,各向异性常数平均曲率都是截断的wulff形状。这将withe的结果\ cite {wente80}扩展到各向异性情况,而he-li-ma-ge的结果\ cite {hlmg09}到毛细管边界案例。证明中的主要成分是新的Heintze-Karcher不等式和具有自己的内部设备的新Minkowski公式。
In this paper, we show that any embedded capillary hypersurface in the half-space with anisotropic constant mean curvature is a truncated Wulff shape. This extends Wente's result \cite{Wente80} to the anisotropic case and He-Li-Ma-Ge's result \cite{HLMG09} to the capillary boundary case. The main ingredients in the proof are a new Heintze-Karcher inequality and a new Minkowski formula, which have their own inetrest.