论文标题

Brifiseg:Brightfield图像中核语义和实例分割的基于深度学习的方法

BriFiSeg: a deep learning-based method for semantic and instance segmentation of nuclei in brightfield images

论文作者

Mathieu, Gendarme, M., Lambert Annika, Bachir, El Debs

论文摘要

通常,生物学中的显微镜图像分析依赖于使用专用染色图像的单个核的分割来识别单个细胞。然而,染色的核具有诸如样品制备的需求和显微镜上的特定设备之类的缺点,但最重要的是,在大多数情况下,核染色与感兴趣的生物学问题无关,而仅用于分割任务。在这项研究中,我们使用了非染色的Brightfield图像进行核分割,其优势是可以从活样品或固定样品中的任何显微镜上获取它们,并且不需要特定的样品制备。在具有U-NET基于U-NET的四个不同的细胞系上获得了来自Brightfield图像的核语义分割。我们测试了系统深度训练的编码器,以确定最佳性能与所使用的不同神经网络体系结构相结合。此外,采用了两种不同的有效策略,例如分割,然后进行彻底的实例评估。我们从标准测试集中的Brightfield图像中获得了核的有效语义和实例分割,以及在用各种小分子抑制剂处理后触发的非常多样化的生物环境中。这项研究中使用的代码公开以允许社区进一步使用。

Generally, microscopy image analysis in biology relies on the segmentation of individual nuclei, using a dedicated stained image, to identify individual cells. However stained nuclei have drawbacks like the need for sample preparation, and specific equipment on the microscope but most importantly, and as it is in most cases, the nuclear stain is not relevant to the biological questions of interest but is solely used for the segmentation task. In this study, we used non-stained brightfield images for nuclei segmentation with the advantage that they can be acquired on any microscope from both live or fixed samples and do not necessitate specific sample preparation. Nuclei semantic segmentation from brightfield images was obtained, on four distinct cell lines with U-Net-based architectures. We tested systematically deep pre-trained encoders to identify the best performing in combination with the different neural network architectures used. Additionally, two distinct and effective strategies were employed for instance segmentation, followed by thorough instance evaluation. We obtained effective semantic and instance segmentation of nuclei in brightfield images from standard test sets as well as from very diverse biological contexts triggered upon treatment with various small molecule inhibitor. The code used in this study was made public to allow further use by the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源