论文标题

动态时空随机波动率模型,并应用环境风险

A Dynamic Spatiotemporal Stochastic Volatility Model with an Application to Environmental Risks

论文作者

Otto, Philipp, Doğan, Osman, Taşpınar, Süleyman

论文摘要

本文介绍了动态时空随机波动率(SV)模型,其空间,时间和时空溢出效应具有明确的术语。此外,该模型包括特定于特定于站点的常数对数挥发性项。因此,该公式可以区分空间相互作用和时间相互作用,而每个位置可能具有不同的波动率水平。我们在此过程中研究结果变量的统计特性,并表明它在结果变量中引入了空间依赖性。此外,我们使用合适的数据转换提出了基于马尔可夫链蒙特卡洛(MCMC)方法的贝叶斯估计程序。在为拟议的贝叶斯估计器的性能提供了模拟证据之后,我们将模型应用于高度相关的领域,即环境风险建模。即使只有少数关于环境风险的经验研究,但以前的文献无疑证明了气候变化研究的重要性。例如,对于2021年意大利北部的当地空气质量,与夏季相比,我们在冬季表现出明显的空间和时间溢出以及更大的不确定性/风险。

This article introduces a dynamic spatiotemporal stochastic volatility (SV) model with explicit terms for the spatial, temporal, and spatiotemporal spillover effects. Moreover, the model includes time-invariant site-specific constant log-volatility terms. Thus, this formulation allows to distinguish between spatial and temporal interactions, while each location may have a different volatility level. We study the statistical properties of an outcome variable under this process and show that it introduces spatial dependence in the outcome variable. Further, we present a Bayesian estimation procedure based on the Markov Chain Monte Carlo (MCMC) approach using a suitable data transformation. After providing simulation evidence on the proposed Bayesian estimator's performance, we apply the model in a highly relevant field, namely environmental risk modeling. Even though there are only a few empirical studies on environmental risks, previous literature undoubtedly demonstrated the importance of climate variation studies. For example, for local air quality in Northern Italy in 2021, we show pronounced spatial and temporal spillovers and larger uncertainties/risks during the winter season compared to the summer season.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源